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CHAPTER 1

INTRODUCTION

Optimal control of stochastic systems has far reach-

ing applications, ranging from the control of space satel-

lites [1] to the control of economic systems [2]. It is

our aim to show general results applicable to many differ-

ent systems. Therefore no attempt will be made to spe-

cialize our results to any one specific field.

This chapter will present our objectives, as well as

some of the work previously done in this area. It will

also present an overview of our approach and a brief de-

scription of the system model used throughout the sequel.

1.1 Objectives

This work proposes an approach for the control of a

general class of discrete-time noi.linear stochastic sys-

tems. The system model incorporates a deterministic lin-

ear portion together with a nonlinear function of the

state and/or control vectors in combination with a white

noise vector, where no Gaussian assumption is made.

Under certain conditions imposed on the statistics of

the additive nonlinear stochastic term, and assuming per-

fect state information, the optimal control, which mini-

-1-
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mizes a quadratic performance index subject to the nonlin-

ear system constraint, is shown to be a linear function of

the state vector. This work will also show that for cer-

tain infinite horizon problems, an uncertainty threshold

can be found such that the designer can, a priori, put an

upper bound on the allowable noise covariance to obtain a

bounded optimal constant feedback control.

1.2 Previous Work

The overall problem of optimal control of dis-

crete-time nonlinear stochastic syatems is quite complex.

Therefore, much previous work has been done on specialized

cases.

For instance, in the design of control systems, the

exact values of system parameters are not often precisely

known. These parameter perturbations can be caused by

environmental effects, operator error, equipment aging

etc. Typically these parameter variations are treated as

additive stochastic sequences, but in some cases of large

variation this modeling is not accurate. In these in-

stances, one is left with modeling these uncertainties as

multiplicative noise. [3] - [8] investigate the optimal

control and stability of these linear discrete-time sys-

tems with multiplicative noise. These systems are general-

-2-



ly referred to as bilinear stochastic systems, systems

with multiplicative noise, or stochastic parameter sys-

tems. An excellent review of the continuous-time counter-

part of this class of systems is given in (9].

(10] - [12) deal with the estimation problems related

to stochastic parameter systems. These problems are asso-

ciated with phenomena such as fading or reflection of a

transmitted signal from the ionosphere, and certain situa-

tions involving sampling, gating or amplitude modulation.

The more general case of discrete-time nonlinear

stochastic systems is investigated in [13], which was used

as a basis for much of our work. [14] and [15] suggest

several novel control schemes for these systems.

[16] - (18] address the steady state characteristics

of lnear stochastic parameter systems. [16] derives sta-

bility conditions for the matrix Riccati equation arising

in the optimal control of linear systems with random gain.

[17] and (18] derive an uncertainty threshold for the

existence of the infinite-horizon solution to the optimal

control of linear discrete-time stochastic parameter sys-

tems. This work is generalized to nonlinear stochastic

systems in chapters 3 and 4.

-3-
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1.3 Overview of Our ARProach

Our intent is to design the optimal linear feedback

controller for a general stochastic system configuration.

We will endeavor to keep the system as general as possible

so that the resulting controller will be suited for as

wide a range of applications as possible. In the remain-

der of this chapter we describe this general system and

then give several examples of both linear and nonlinear

systems that it covers. The associated optimal fi-

nite-horizon controller for this system will be presented

in chapter 2.

The general finite-horizon control solution, although

quite interesting academically, is not always the most

practical approach. Quite often it is advantageous to

utilize a constant feedback controller. This prompts us

to investigate the infinite-horizon solution. Our concern

here is does the infinite-horizon solution exist? And, is

there a quantifiable means to predetermine this existence?

Through steady-state analysis of a Riccati-like equation

in Chapters 3 and 4, threshold conditions are developed

for both the scalar and the multivariable cases, such that
F

the designer can, a priori, based on the covariance of the

stochastic parameters, guarantee the existence of a

-4-
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steady-state constant feedback controller. Computer simu-

lations follow both developments to verify these threshold

conditions.

1.4 General System Description

The optimal control problem is to minimize the fol-

lowing quadratic performance index

E XrA, AF+ XTIJXI;+X T u, + R&(1.1)

where N is the final time, E(.1 denotes the expectation

operator, Sy and Q& are positive semi-definite symmetric

matrices, Ra is a positive definite symmetric matrix, and

[Qa Ta
T R,2

subject to the system constraint

.,- Ax,+8,u,(x.ua,.a,) (1.2) a

with x. given, and

x,ER, U,ER', aeR,', f,:RaXRXR.-*R^

The noise sequence a. is assumed to be independently dis-

tributed in time, but not necessarily Gaussian, and

tIx,.u,.a,) has the following statistical description

-5- a



E (1%(Xa, L~t L&) I xgIuv 0 V xtER', u,,eRm, I-O...,N-I

(1.3)

and

&~(x1 ,Utj ) E(f &(X&, U L,)Ir(x,L,aA)L (1.4)

is a quadratic function of x. and u. having the following

form

where

P~t, W'#. and M, are symmetric and n'-n

and

F,,(xk, U,)>O V xeR., utr:R'

Note that the above condition is not at all restrictive as

it is necessary in order for equation (1.5) to be a proper

covariance representation.

-6-
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1.5 Examples of Linear Stochastic Systems That Fit Our

Description

The above general problem description encompasses

many known standard systems. For instance, one of the

most common examples is a linear system with an additive

noise term. Let

f (Xt , U C,

thus reducing equations (1.2) - (1.5) to the following

x,.- A,,x,+ B Au+ ( .6)

with

F,(Xa . ,,. t,).P (1.7)

Similarly (1.2) - (1.5) can be ased to represent

linear stochastic parameter systems. The general form is

x,., - I, ()X&+B()U (1.8)

where A,(w) and 3.(w) are matrices having elements which are

white noises possibly correlated with each other at each

time instant k. This modeling evolves naturally in sam-

pled versions of diffusion processes associated with nu-

clear fission and heat transfer, as well as in the migra-

tion of population, and the growth of biological cells,

-7-
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etc. This is also the model typically used to describe

the uncertainties in the parameters connected with econom-

ic predictions [2]. One can also arrive at (1.8) by:

1. Uniformly sampling a continuous-time stochastic

parameter system.

2. Randomly sampling a continuous-time deterministic

system.

3. Modeling a deterministic system with an additive

noise having random correlation characteristics.

The first two are self explanatory and the third is shown

below. Suppose

(1.9)

with the noise term a. possessing the dynamics

t -, D & O ( u )a,, + f,,. (1I.10 ) ,

where Daw) is a matrix with random elements, and Pb is

additive white noise. Then by enlarging the state space,

we obtain

X&+: [A& C't )]][stu1[O1ELa .J 0 D,(w )a, L 0 u," L, (1.11)



1.6 Examplea 9f Nonlinear Stochastic Syutems 

The following are some novel special cases of the

general system described by equations (1.2) - (1.5).

1. Norm Dependent Random Vector:

Let

*XrD uUD~u (1.12)

and

E(a]/,.r m P&t , E(a[.% }m (1 .13)

Then

, TT O (1.14)

with

D3 >O and [D,-D 2D;'D;]>O

Note that if D1 =I, D,=D,=0, then

In the following examples only the system will be

given, as the covariance matrix can be determined by fol-

lowing the above procedure.

-9-



2. Random Vector Dependent Upon the Sign of a Scalar

Nonlinear Function of x, and u,:

Let

sgn (1(,,1,)1 ,, (1.16)

where *:itxRa.Rl , and the statistics of a. are as in equa-

tion (1.13).

3. Random Vector Dependent Upon the Absolute Value of a

Linear Combination of x& and u,

Let

ft(x , UI,,)-c ",I p r.y,, u .x (1.17)

Again the statistics of a. are given in (1.13).

4. Random Vector Dependent Upon the Norm of x, and the

Absolute Value of Components of x&

Let

f* ,U I( 10 ~~-+c~xI(.8
't a'.

where the n vectors a......: are uncorrelated and -L is the

e component of x,.
4.,

-10-
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It is worth noting that the above examples are gen-

uinely nonlinear, and no assumption has been made on the

type of probability distribution of a..

a',

: I
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CHAPTER 2

FINITE-HORIZON OPTIMAL CONTROL

This chapter presents the optimal solution to the

general discrete-time nonlinear stochastic system outlined

in Chapter 1 equations (1.1) - (1.5). Our approach is to

merely state the solution now, and then in section 2.4 use

stochastic dynamic programming to prove that this solution

is in fact optimal. Rather than stating the solution di-

rectly, we will first try to gain insight by examining

known simpler cases.

2.1 Deterministic Case

The deterministic case is well documented in most
texts on optimal control. [19] is one such reference.

Once again the performance index is a quadratic function,

but there is no need to take the expected value, due to

the deterministic nature of the problem

2 X ,u, UR~tu,) (2.1)
A-0

where so and Qa are positive semi-definite symmetric ma- h

trices, R is a positive definite symmetric matrix, and

-12-



[Q& Ta]

[Tr Ra k 0

The system model is

Xa.i - Axa+Btt, (2.2)

For this system the optimal control is known to be

ut& -Ka x, (2.3)

where Kk is called the Kalman gain, which is given by

Kt- =[BTS..,B,+ R,]-'[IBS,.' A& + TT1 (2.4)

S& is the solution backward in time, from Sm, of the

following Riccati equation

S& -AisA.,-[As..Ba + T&J& s.,Ba+ Ra]-'[Bs . A& a r ]+ Qak

* (2.S)

And the optimal cost is given by

J, = x S,x, (2.6).'

2.2 Stochastic Parameter Case

References [4] and (18) make use of the following

system description. We find this case interesting because

it is very similar to the general form to be proposed in

-13-
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section 2.3. Also, much of the derivation, although not OP

presented here, is the same. We minimize the following

performance index

• !xQxaXrT".aL g1Ra+.' (2.7)
E(~~4S~xOI. .~RL~J

where S, and Q. are positive semi-definite symmetric ma-

trices, R. is a positive definite symmetric matrix, and

&Ta

subject to the following stochastic system model

xu " a xA +C% B LL it (2.8)

where a. and 8. are scalar Gaussian white random sequences

with the following known stationary statistics

E E{(-i) 2 )- r (2.9)

E 18,)- , E{((a ;5) 2)-, _ 2.10),;

E((a- i)(- 3)- A (2.11)

The form of the optimal control is once again

up 'u-Kax& (2.12)

But K, is now given by

-14-
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K&-l t~.,B, +R,]"'[(a+ A)B7St. , At+TtI (2.13)

and S& is given by

" -[(i * ~ IA S , . =[ Bt +) ~ ,, = T&" ( AlarS,,., A,+ T T

(2.14)

Notice the similarity between equations (2.4) and (2.13)

and between equations (2.5) and (2.14). Also the expres-

sion for the optimal cost remains unchanged.

I -xrStX, (2.1I5)

2

2.3 General Nonlinear Stochastic Case

The optimal solution to the system described in sec-

tion 1.4 is as follows. The optimal control has the same

feedback form

up-=-K~x& (2.16)

but Ki, is now given by

K[- A .. , A, * r (2.17)

s, is given by

it - [R S ,a']Kt (2.18)

-15-



and the optimal cost is given by

jimi rS,,+G,(2.19)

where $.in given, ear=O and

*&rn tr (s,.,P:)*,., (2.20)

- tr (S,. , P:)W l  (2.21)

Sl'- . t~r (3,.1,P' )N' ] (2.22)

- tr (S..P'Mi] (2.23)

2.4 Proof of the General Reult

The proof of the general result can be broken down

into three main steps. First, stochastic dynamic program-

ming or Bellman's principle of optimality [19] will be

introduced. Then, using this concept, we will generate a

form of the Bellman functional equation for the optimal

cost to go from time k to finish time N. Finally, induc-

tion will be used to verify a proposed solution to this

-16-



functional equation. The solution for the general nonlin-

ear stochastic case, equations (2.16) through (2.23), in a

result of this induction step.

i) Stochastic Dynamic Programming

With dynamic programming, we are not concerned with

how we came to be in the present state, but are only

concerned with optimizing all future decisions, which is

called Bellman's principle of optimality (19]. If this

procedure were carried out iteratively, the result would

be an overall optimal control sequence. With this thought
V..-

in mind, let us examine equation (1.1), which is repeated

here for convenience', 1

2 &.0 2 2r.A

Equation (1.1) may be written in two parts (notice

the temporary change in subscripts).

{Z(o X 1Tu,+u R /,u) +

+,E s, (. xQ, XA ,+ T,,,,+- (2.24)

We are trying to minimize equation (2.24) by appropriately

choosing the control sequence ul. The first term of equa-

-17-
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p..:

tion (2.24) does not depend on ua, u,, u., ... , uL.,.

Therefore, applying Bellman's principle of optimality, it

is sufficient to minimize only the second term over ua,

ii) The Bellman Equation

In analyzing the second part of equation (2.24), the

following properties prove useful and can be found in

[21]. Here, Y is an arbitrary function of x.

E{EY} - E{E[Y Ix])

where the right hand side of the above equation is the

expected value of the conditional expectation of Y given

x. Also

minE{Y} - E{min Y} .

putting these together

minE{Y} - E(minE[Y ix])

Applying all this to the right hand side of equation

(2.24) we have

,.-I2
N-(xQ,, Tt, 1 aD' r E{J(x))min E{ r SNXMi+ I 2 Xag X~ Ig~g P 1k (X J)f

(2.25)

-18- .9 4



where

JI(xi)- rain E ix SNxN+ T LxrRX,+XrTL,+iRi, IX,

(2.26)

Representing J.|xjl as a summation of minimizations over u,

i& . i2 I ... , ur&., we have

+m{in! Q +T ITR

L2 2 A*

+minE 1XA 2 QA- 2 XA- 2 + j. 2 TI12. 2 t .zAi4 2 RI%-UA+
12L

+minE... Ix .. 1xa..,l x}I  (2.27)

One can easily see that, excluding the first term, equa-

tion (2.27) is simply Jt..x,.,) by our definition of J.(x~J.

Substituting J..,(x..J into (2.27) results in
+ I rr ,,, 1X~ +E

J.Cx()- miniEU-xQ~ x + xrT.. +J +IR( +. , I X.
2 ~ 2

(2.28)

-19-



-V A.VI -JV as7. .I V

As u, is a function of x., all the quantities in the first

expected value of equation (2.28) are known constants, for

a given k. This results in the following form of the

Bellman functional equation

Jht(x) -mnin iQxaxtauaukEhlxl)x]

(2.29)

iii) Solution of the Functional Equation

The solution to equation (2.29) will be shown to be

Ja(xa)= mxS .xt+ ai S, given, GN-O (2.30)

First, by definition

4T

J,(XN,)- iXSXN (2.31)

2
Next, assume

Finally, to show that equation (2.32) implies equation

(2.30), we will start by inserting equation (2.32) into

equation (2.29)

-20-
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J*,(x,)-in in[x ix*xtaL44Rz* *(*XI S. IXk. I+Ga.1 I IXa}

(2.33)

Inserting equation (1.2) for x,.,

j 4g

+EXITAILx, Btut+L~

2( gsg+a&a+a] [~AaXa+ BtLLt+ f %]+ 9&.1 1 X1,f

(2.34) "S
Expanding equation (2.34)

J,(x,)- rnin[ x&Qixa+ XTztz+ jLR,, ,+

-Ei S k +S.UTB+ S,.,Bt, +ifS.., +

222
1T TS Bt, + i r TStIA,, ~ rS,.

+ ,8,5rS,.I ft + ,Jtf T,., At,+ f S t., But+ a,., X& (2.3S)

Now, let us consider equation (2.35) in depth. First, the

*expected value can be distributed over the sum of terms.

Second, because x. is known (assuming complete state in-

-21-
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formation), all of the terms, with the exception of terms

containing f., can be considered constants for a given k.

Furthermore, the expected value of any term containing a

single I& term is zero, as the expected value of 1, is

defined to be zero. Also, each term is a scalar (ixl).

Therefore, each term is equal to its transpose, allowing

us to further reduce the equation

1
(2.36)

Now we need to examine the remaining expected value term

in equation (2.36). As was stated earlier, we are working

with a scalar term. This allows us to take the trace of

the inside term, as the trace of a scalar is equal to

itself. Also, the trace and expected value may be inter-

changed, and the expected value of S.=$,. Using these

facts and the property

tr [ABC]- tr (CAB] (2.37)

yields the following equations

-22-



, {1E! E( tr [j's, . .] . -E( 1 tr2(IS~~ 2) 2 trIaA,.. IIX -

tr [Sr, a..\,frl IEE ffTkxl].! t S.. E'f~ r~I , .)t [s..tr [J']*. - tr , ]

(2.38)

Looking at the rightmost equation of (2.38), one can see

that the expected value is simply F& from equations (1.4)

and (1.5). Therefore, substituting equations (1.5), and

(2.38) into equation (2.36) yields

J,(X,)- min iz,Q~X&+ xrT& * ,,, ,tS..t,

IL&S~. 1 2+

2 4I

p, T r r, pUAU

+i tr S..,P + tr S. . Z 'I

(2.39)

We need to investigate the last three terms further, and,

as they are basically the same, we will consider just the

first of the three. The trace and 5,~can be taken inside A

the summation, as shown in equation (2.40).

1- tr S P: tr [S,.,P. x'WxJ (2.40)

4t-I

-23-
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Using the fact that X. is a scalar, we can remove it

from the trace leaving

tIXTWI

tr [aa.,P lx txt (2.41)

Now we can insert the trace between xr and w!, as the

trace is simply another scalar. Also x& does not depend

on I and can be removed from the summation.

tr [ ,P lW}xM I xi;Trx, (2.42)

where

14 tr [$.,P't] (2.4:3)

Similar procedures can be followed to simplify the last

two terms in equation (2.39), generating the following two

definitions
.5

tr [S,.,P,]J, (2.44)
21-I

Art'I tr [St.1PI]M:l (2.45)

9--t

Substituting all of this into equation (2.39), and group-

ing like terms results in the following equation

-24-
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J,{x,)-ntn ix,(Q, ArS,.,A, ,, X,+ T. . 1 rR "

1 1 r a

+i tr [S,.IPJ4+X&Lta4 4+ tagta (2.46)
2 2

To find the minimum, we can take the partial derivative of

equation (2.46) with respect to u., and set this equal to

zero

-(x)Tx+ R u+BS.*B*S,a Ax+ NX.+ Vt&Ilt

(2.47)

grouping like terms

I~aB~a~i~a ja1(L -[Tx* ,,a~A~x,+Nrx,] (2.48)

go and S. can be shown to be positive semi-definite and

positive definite respectively, and, since R, is positive

definite the following inverse exists

Se"

Therefore, solving for u

,- B + T: B TS A,+ N']x, (2.49)
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As can be seen in equation (2.49), we have finally arrived

at the optimal controller proposed in equations (2.16) and

(2.17). We have also shown the derivation of equations

(2.21) - (2.23), but it remains yet to complete the induc-

tion on .1, and verify equations (2.18) - (2.20). This

can be done by substituting equation (2.49) into equation

(2.46). After appropriate algebraic manipulations this

results in

11J,(,.IxrQ, r S,, A, 1&Kr[R, + Br IBI V i

2 +

,.tr (2.50)

We began the induction step with j&., and needed to show

that this implied

Comparing equation (2.51) with equation (2.50) we can see

that this is true if we assume the following

St-Q,, +ArS.,A +V,*KIRB ,.,B& + 'K, (2.52)

61,-i tr [S,,.,:] 0,., (2.S3)
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Equations (2.52) and (2.53) not only complete the induc-

tion, but they also verify equations (2.18) -(2.20), thus

completing the proof.
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CHAPTER 3

SCALAR INFINITE-HORIZON CASE

Examining equation (2.17) one observes that the gain

K& is dependent, at stage k, on several parameters. In

the case of a stationary system, A. B, R. M. N, M., T, Q, and P

constant matrices, K. is dependent on only St.,. There-

fore, if the evolution of S. comes to a steady-state, the

evolution of K, will subsequently come to a steady-state.

In most well-behaved systems this is precisely the case,

and the steady-state value of K,, although not optimal for

the finite-horizon case, quite often is an excellent and

cost effective simple feedback control. This chapter de-

rives a threshold condition for the scalar case, based on

the statistics of the system, under which one can guaran-

tee the existence of a steady-state solution for S.

3.1 Scalar System

The performance index is

E (! I 2 ""+1U 2

'V x + x,,,, ( .1

and the system model is

X&. axh,bk+f (x&,tk)j (3.2)
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Before proceeding, we need to carefully examine equation

(1.5), which is repeated below.

Fj(X a, u) - P:+ .jP.(ixrW"xa.'NU' U L~~ (1 .5)

First, as we are dealing with a scalar system, a is equal

to one. Therefore, we no longer have a summation. Se-

cond, as we have stated, P, w , N, and m are constants,

so we can drop their respective subscripts. Next, let us

consider the term P'. This term is equal to zero unless

there is a purely additive noise term in t.(,.u,.1j. If Pe

is nonzero, then l, equation (2.20), grows without bound,

and subsequently, the optimal cost, equation (2.19), grows

without bound. Therefore, for our investigation of the

infinite horizon case, we will require Ibtx.'s...I to not

contain a purely additive noise term, making P*, and e&

both equal to zero. To further simplify notation we will

let P' =V P' P=, and P'=M . All this reduces equation -

(1.5) to

I (3.3)

and the optimal solution to

-29-
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pl

T + St.,(ab + -_:
- - R . .,(b----' ) X"" (3.4)

(.-.+ 2).,2o.+

¥7--(b2+ fl(~s

with the optimal cost to go from time i equal to

(i3x.6 (3.6)
./,'.

3.2 Threshold Condition

Consider equation (3.5) and suppose 3.. gets very

large. Then we can consider Q, r, and R, added to a very

large Se., as negligible, thus reducing equation (3.5) to

S"SI al 2"2L' 2+ .(3.7)
b 2

As we are only interested in the steady-state value of s$,

forward or backward evolution in time does not matter,

therefore, we will interchange Se and 3... .

b - 2 (3.8)ll,,,2 b2+ l

or
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,A

where I

g =(a --- (3.9)

Equation (3.9) is the threshold condition. It is

obvious that if g < 1 then the evolution of Sk stays

bounded and S, and subsequently Ka, has a steady-state

solution.

There is an alternate approach to finding the thresh-

old condition g that does not utilize the above approxima-

tions. First suppose 3 does reach a steady-state, say 3, a

then equation (3.5) take. on a somewhat simpler form.

S 2 + 2 (3.10) -
RSb2+E)

-'
-2 R S(b 2 ),

multiplying both sides by the denominator and rearranging -

terms yields

* [~~T + Sab + )2- [R +S(b2 M)][Q +S(a2+~)-s

(3.11)

Next, squaring the left side and multiplying out the right

side yields
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finally combining the like powers of S

+S[,R(a 2+ fl)-2T ab + !)+ Q(b 2+ -R) R+,RQ - T 2 .0

(3.13)

Upon examining equation (3.13) one can see that it is just

a quadratic equation in $, of the general form shown

below.

AS 2 +BS+C-0 (3.14)

Thinking in two dimensions, if A<0, then we have a

parabola concave downward. If at the same time C:o, then

the Y intercept is positive and we have a unique positive

definite solution for S. Now, let's investigate these

conditions with respect to equation (3.13). C>O implies

RQ-T'O. This is a natural restriction as r is the cross

weighting term from x. and u, and can not be weighted
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larger than Q or A, which are the weighting terms associ-

ated with x: and as respectively. As a result AQ-r'o is
p

automatically true.

Therefore all that is necessary for $ to have a

unique positive definite solution is the following

S a -b -b- <0 (3.15)

Simplifying equation (3.15) we arrive at the threshold

condition

9 + 2 + --l I< 1(3.16)

2+E

It is worth noting that, as the above derivations

show, the threshold condition g is both a necessary and

sufficient condition. If g is less than one, then the

steady-state solution exists, but, if g is greater than

one, then S, increases without bound.

3.3 Simulations

Figures 3.1 through 3.3 plot the evolution of S

given by equation (3.5), forward in time, vs k for fifty

values of *• Each graph contains four plots of s. for

various values of V ,N, and m. These values were specif-
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ically chosen to demonstrate the threshold condition. It

should be noted that, as the threshold condition is ap-

proached, the values of so become very large. Therefore

the base ten logarithm of S. vs & is what actually appears

in the graphs.

It should also be noted that, as we are plotting S.

forward in time, the equation for the optimal cost to go

from time 0 to time * is now

1
a= 0 2s,, (3.17)

As shown in equation (3.17), the optimal cost, for a given

xe, is merely a constant times S.. Therefore, figures 3.1

through 3.3 can also be considered the evolution of the

optimal cost .
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5.

EVOLUTION OF Sk
2.1- SCALAR CASE

2.0-
1.9-
1.8-
1.7- 

.
1.6-

1.4-
1.3-

1.2- 91

1.0-
*' 0.9-

0.8-
0.7-
0.6- g-.714

0.5-
0.4-
0.3-
0.2- .

0.1-
0.0-

0 20 40

k

Figure 3.1 Evolution of sk with so=O, T=0.2, Q=A1.O,

a1l. I, b= .O0, V =Y=O, and M=O, 2.88, 7.2, and 11.52
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EVOLUTION OF Sk
SCALAR CASE

4.0-

g -I

3.0

2.0

1.0

g -0.0

0.0-
0 20 40

k

Figure 3.2 Evolution of s# with s9=0, T=0.2, Q=A=1.0,

a=1.1, b=1.0, M=N=O, and W=O, 1.28, 2.0, and 2.42
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EVOLUTION OF Sk
SCALAR CASE

3.4-

3.2-

3.0

2.8

2.6

2.4-

2.2- 
g l

2.0-

* 1.8

a 1.6

1.4- g .962

1.2-

1.0-

* 0.8- . - .722
0.6

0.4- g .472

0.2-

0.0-

0 20 40

k

Figure 3.3 Evolution of s, with s.=0, T=0.2, Q=A=1.0,

a=1.1, b=1.0, N=0, M=1.28, and V=0, 0.5, 0.98, and 1.28
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CHAPTER 4

MULTIVARIABLE INFINITE-HORIZON CASE

Unlike the scalar threshold condition, equation

(3.16), an absolute threshold for the multivariable case

is much more difficult to define. Therefore, a sufficient

condition is found that guarantees the existence of the

infinite-horizon solution. If the threshold is violated,

the steady-state solution may or may not exist. In spite

of this, the relative magnitude that the threshold condi-

tion is exceeded by is still an excellent indicator of the

steady-state characteristics of $a.

4.1 Threshol5 Condition

As before, we are only interested in the steady-state

behavior of s$, and we can choose to evaluate this forward

in time rather than backward. Therefore s., which is

equation (2.18), will be rewritten forward in time. As we

are interested in the steady-state analysis, all matrices

except $a will be assumed constant. Also, to make the

problem more tractable, without a great loss of generali-

ty, we will drop the cross terms T& and V& and assume Q is

positive definite. Therefore we will begin with the fol-

lowing equation
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Q., - Q A A tAV- AsA[R+ BTSkB +V.- UA s.AA

(4.1)

where 1 and 1, now represent the following values

' 4"

j,[ tr (SP')w'] (4.2)

Inserting equations (4.2) and (4.3) into equation (4.1)

S.t-Q,+ArSkA+ Z tr (SP')i "

-ArS*B[ R+BrS.B+ tr (S*P')M' BrS A (4.4)

We will now show three properties of the evolution of

S that guarantee the existence of a steady-state solu-

tion. First, we will show that S& is always positive

definite. Next we will show that S& is a monotonically

increasing matrix sequence. And finally, if we also show

that S, remains bounded above, then it must come to a

steady-state value (22]. Therefore, we will prove the

first two properties, and then find a threshold condition

such that the third is true.
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First, we will show that, starting from s.=O, all

subsequent s, are positive definite. Evaluating equation

(4.4) with k=O yields s,=Q, and, as Q is positive defi-

nite, S, must be positive definite. Now we may apply the

well known matrix inversion lemma [19]

1A1+ M~a. -Al-AIIAI A . +A-']-'.

where Al, and An are square and non-singular, to equation

(4.4) to obtain

3,,- AT[31 +B[R+ij tr (3,P')Mg] B1T] AQ+2 tr (,'W

(4.5)

Substituting S,=Q, which is positive definite, into

equation (4.5), one can see that the two summation terms

are at least positive semi-definite, and, as A is positive

definite, the inner inverse exits and is positive defi-

nite. Now, using these facts and the property that any

matrix quadratic form zXz" is at least positive semi-defi-

nite if X is at least positive semi-definite, we can show

that

B R+5F tr (SP')M' BTO

9-1
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We have shown s, is positive definite, therefore ; ex-

ists, and, moreover, s;' is positive definite which means

the outer inverse exists and

AT[S1 +B [R+ixZ tr (S,,P')M Br]A k 0

We already have Q positive definite. Therefore, $2 is

positive definite. Obviously this pattern continues with

increasing k. Therefore, starting from s.=0, all subse-

quent Si are positive definite.

Next we will show that s$ is a monotonically increas-

ing matrix sequence. We have already shown that starting

from S.=O, $,=Q, which is positive definite. Using this

as the basis, we will now show that $ implies S,.,S,.

The following matrix manipulations can be found in (20].

Suppose

St> S_1 (4.6)

It follows that

] ! [ a

taking the trace of both sides

tr ([Pg]1 jP - tr 41PLS,_jP' i.
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using equation (2.37) the terms inside the trace may be

rearranged

tr (s,,P')2 tr (,-P (4.9)

now, multiply both sides by M'

next, a sum over all idoes not change the inequality

tr (,,P'M'2 tr SA-I IM(4.11)

similarly add Ato each side

Ri tr (SP)':~ Ztr (S-P)' (4.12)
R+Z -1'1''7~.

taking the inverse of both sides reverses the inequality

L : tr (S,,P')M' At [SR+i tr (5,-1 P'} (4.13)

now multiply from the left by B and from the right by ,

B R tr{SPt}MjdBT :S BR+-) tr (,-P)i

(4.14)

inequality (4.6) implies
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S-1: S-1(4.15)

uuing this fact

sI.[1:~ tr (StPi)Ms] BrT5

It . B[R+ tr (SBIP')M'1 By (4.16)

again taking the inverse reverses the inequality

[S' + B[R + tr (S '.I~)llBr] (4.17)

multiply from the left by Ar and from the right by A

AT I+B 8R.j tr SP) B A2

2: AT[t- I +B BR+ z tr (S,-IPt)Al]BTA (4.18)

The other summation term can be developed similar to in-

equalities (4.6) through (4.11), therefore adding Q and

the other summation to both sides does not affect the

inequality
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Q A S-_+B R+- tr (SPE}M* BJ A+ tr (S.P')W'

Z! Q+ A &-I + B R; tr (S,_1 P')M'1Bg A+ tr S-P'W

(4.19)

Comparing inequality (4.19) with equation (4.5) one can

see that the left side is just 5,, and the right side is

just S. Therefore inequality (4.6) implies the following

S It., 2 S' (4.20)

Therefore, by inductive reasoning, starting from S=O, Sk

is not only positive definite, but it is also monotonical-

ly increasing.

All that is left to do is to determine a condition

under which the positive definite monotonically increasing

matrix sequence S. remains bounded. First, assume so gets

large, but that it has not yet exceeded the limit given by

inequality (4.21) for a positive scaler a.

S&Sal (4.21)

We need to find a condition such that, for large S.,

inequality (4.21) implies

$= . 1 : I C 1(4.22)
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so that the limit given by aI is not exceeded by subse-

quent terms in the matrix sequence. Then, through induc-

tive reasoning we will be able to conclude that this

threshold will never be exceeded. Similar to the proce-

dure followed with inequality (4.6), inequality (4.21) can

be transformed into inequality (4.23)

[ [Q* ATS1.+B[R+_Zt SP)~ T A+ tr (S,,P')W':g

* Q+ATa-,I +a tr (P'}M' BT] A tr (P') '

(4.23)

The left side of inequality (4.23) is just $e,. Therefore

if we set the right side of inequality (4.23) less than or

equal to aI, then inequality (4.22) is satisfied and $a

will remain bounded and reach a steady-state. Therefore,

the system statistics must be such that the following

inequality is satisfied

Q- -- I +RRiL7tr (P')M'jBT A.+cL tr (rw15 i

(4.24)

Factoring a out of the inverses

-45
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AT[a'I I tr (P')M] Br  A +
9"_-

I+Q5ytr (P')W':5~ a (4.25)

and

Q+cLAT I +B a-"R+ : tr (P'}M' B A+ tr {P')W' a I

(4.26)

Dividing both sides by alpha

a,"Q+A" I +B d-'R tr (P')M' BT A+F tr (P') W:5 I
2 I--

(4.27)

As a was an arbitrarily large number, a"Q and a-'R can be

considered negligible, thus completely eliminating a from

the equation. If we also assume

tr (P')M'>o0

we obtain

A" I +B tr (P')ML' B A + tr (P')W' < I

(4..28)
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This simply means that the magnitude of the eigenval-

ues of the left hand side of equation (4.28) must be less

than one. This is only a sufficient condition for the

existence of a steady-state solution to $.. As was stated

before, if the magnitude of the maximum eigenvalue of the

left hand side of equation (4.28) exceeds one, a

steady-state solution for S, may still exist, but, as long

as the maximum is less than one, a steady-state solution

is guaranteed to exist.

Even though equation (4.28) is only a sufficient con-

dition for the multivariable case, it reduces to the nec-

essary and sufficient condition given in equation (3.16)

for the scalar case. If we evaluate equation (4.28) for

the scalar case, then n=l, which implies n-=l. Therefore,

we only have a single term for each of the summations,

and, if we let PM-M and PW=V V, then equation (4.28) re-

duces to

+;i +T <1(4.29)
1+7

clearing some of the fractions

+b 2 m <1 (4.30)2 2b2+ M

adding and subtracting a
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(a2. 2) 2  <1 (4.31)2)+ -¢ 2b 2+M

finally this simplifies to the scalar condition, equation

(3.16), less the cross term N/2

a2K b <1 (4.32)

Therefore, as was stated above, even though equation

(4.28) is only a sufficient condition, in the scalar case,

it does indeed reduce to a necessary and sufficient condi-

tion. It should also be noted that, as in the scalar

case, we must require Idx..,) to not contain a purely

additive noise term, making P and a, both equal to zero.

4.2 Simulations

In the following simulations, x is equal to two, and

$, is plotted vs k for fifty values of h. With a equal to

two, a- is equal to three. Therefore if we let

p'm=I M'lI

51 3 W'-W1

then equations (4.2) and (4.3) reduce to
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wtr (S.) (4.33)

1t

im tr (Se) (4.34)

Inserting equations (4.33) and (4.34) into equation (4.1)

results in

S..,-Q Ar $,-S.8 R+BrStB+! - tr (St) B rS A+W tr (S.)

(4.35)

Applying the same parameters to the threshold condition,

equation (4.28), results in

wi Ar I +-BBTr  A< 1 (4.36)

and similar to the scalar case, the optimal cost to go

from time 0 to time k is

J" xrSXo (4.37)

The first four figures show the evolution of Sa,

equation (4.35), for different values of m and w. The

maximum eigenvalue of the threshold condition is shown at

the top of each figure.
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Also, with x equal to two, $, is a two by two matrix,

and, as it is symmetric, S.(1,2) = s.(2,1). Therefore only

three plots appear in each figure. The next four figures

show the respective evolution of the optimal cost given in

equation (4.37), with xe equal to a unit vector.

Unlike the scalar case, we do not have large varia-

tions in magnitude within each individual figure so there

is no reason to take the logarithm. Therefore, the actual

values of S. and J. are plotted vs t, but one should note

that there are still large variations in magnitude between

the figures. The following values apply to all simula-

tions. R=0.1, and

0.0 0.2] 0.0 1.0 0.2
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EVOLUTION OF Sk
LAMBDA MAX - .693

2.2-

2- Sk (2,2)

1.6-

1.4-

1.2- Sk (1,1)

0

0.8-

0.6-

0.4

0.2 Sk (1,2)

0 20 40

k

Figure 4.1 Evolution of S. with s-=0, S,(1,2) =,(2,1),

m-w=0.l, and the threshold condition equal to 0.693
a,.
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EVOLUTION OF Sk
LAMBDA MAX- 1.1637.0-

6.0-

Sk (2,2)

5.0

4.0

WSk (1,1)

3.0

2.0

1.0

Sk (1,2)
~~0.0 d

0 20 40

k

Figure 4.2 Evolution of s& with se=0, s&(1,2) S (2,1)

wi=w=0.5, and the threshold condition equal to 1.163
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EVOLUTION OF Sk
LAMBDA MAX -1.370

32.0-
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6.0-

4.0-2.0- Sk (1 ,2)
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0 20 40

M k

Figure 4.3 Evolution of S& with se=O, Sb(l,2) =S(2,1),

MvW=0.7, and the threshold condition equal to 1.370
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EVOLUTION OF Sk
LAMBDA MAX = 1.676
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Figure 4.4 Evolution of s, with S.=0, s,(1,2) = s$(2,1),

,=w=1.0, and the threshold condition equal to 1.676
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EVOLUTION OF k
LAMBDA MAX • .6931.7-

1.6-

1.s-

1.4-

1.3-

1.2

1.1

1.0
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0.8

0.7-

0.6

0.5-

0.4

0.3

0.2

0.1

0.0

0 20 40

Figure 4.5 Evolution of /a with x=[i 1]', m==0.l,

and the threshold condition equal to 0.693
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EVOLUTION OF k
LAMBDA MAX u 1.163

4.5
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3.5-
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1.0"

0.5

0.0 r

0 20 40

k

Figure 4.6 Evolution of J, with xo=[l 1]', ,=w=0.5,

and the threshold condition equal to 1.163
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EVOLUTION OF Jk
LAMBDA MAX * 1.370
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Figure 4.7 Evolution of ., with x.=[l 1]T, ,n=w=0.7,

and the threshold condition equal to 1.370
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EVOLUTION OF Jk
LAMBDA MAX *1.676
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Figure 4.8 Evolution of is with x,(1 l1l', mgw1gJ0~,

and the threshold condition equal to 1.676
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CHAPTER 5

CONCLUSIONS

We began by introducing a very general system de-

scription. We showed that this system description can

represent anything from a simple deterministic system to a

very complex nonlinear stochastic system, and gave several

examples. After giving the optimal finite-horizon solu-

tion for several known simpler cases, we then stated the

finite-horizon optimal controller for the proposed multi-

variable nonlinear stochastic system, subsequently proving

the general result.

The practicality of the infinite-horizon control ap-

proach was pointed out, prompting an investigation into

the steady-state characteristics of the Riccati-like equa-

tions involved in the finite-horizon control solutions. A

necessary and sufficient condition for the existence of a

steady-state solution was established for the scalar case.

Due to the complexities involved in the matrix case, only

a sufficient condition was developed that guaranteed the

existence of a steady-state solution. This sufficient

condition for the multivariable case was shown to reduce

to the necessary and sufficient condition for the scalar

case. Extensive simulations were provided for both cases

to verify these conditions.
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Possible future work in this area might investigate

the continuous-time case. The continuous-time counterpart

of the general controller proposed in this work would most

likely be needlessly complex. Therefore, it would seem ~~

advantageous to develop a sampling procedure for continu-

ous-time systems, such that, the resulting discretized

system would fit into the framework of the discrete-time

solution already given in this work.
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C *MARK CIANCETTA*

C * 20 JUL 87
C * THIS PROGRAM COMPUTES THE THRESHOLD VALUE, *
C * AND SK FOR THE SCALAR CASE *
C
C

REAL M,N 
C

A 1.1
B= 1.0
S= 1.0 -
T = .2
SK - 0.
R 1.0

C
C * * * * INPUT VALUES FOR M, N, AND W * * * *
C

WRITE (5,5)
5 FORMAT (1X,'M =

READ (5,10) M
10 FORMAT (F5.2)

WRITE (5,15)
15 FORMAT (1X,'W = ?')

READ (5,10) W
WRITE (5,17)

17 FORMAT (1X,'N =
READ (5,10) N

C
C * * * * CALCULATE THE THRESHOLD CONDITION * * * *
C

g (A**2 + W/2) - ((A*B + n/2)**2/(B**2 + M/2))
C
C * * * * OUTPUT VALUE AND PROMPT TO CONTINUE * * * *
C WRITE (5,20) g .
20 FORMAT (iX,'THE THRESHOLD VALUE g = ',F6.3)

WRITE (5,25)

25 FORMAT (1X,'ENTER 1 TO CONTINUE')
READ (5,30) I

30 FORMAT (12)
IF (I.NE.1) GO TO 50

C
C * * * * OPEN A FILE AND INITIALIZE IT * * * *
C

OPEN (UNIT=10,FILE='SK' ,STATUS= NEW')
WRITE (5,35) g
WRITE (10,35) g
WRITE (5,35) SK
WRITE (10,35) SK

C
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C ****CALCULATE THE LOG OF SK*** *

C
DO 40 I=1,50

SK = Q + SK*(A**2 + W/2) p
* -(((T + SK*(A*B + N/2))**2)/
* (R + SK*(B**2 + M/2)))

C
C * * * * SET VALUES <1 TO 0 TO AVOID NEG OUTPUT * * *
C

IF (SK.GT.1.)THEN
S = ALOG10(SK)

ELSE
S =0.

ENDIF
C
C ****OUTPUT RESULTS****
C

WRITE (5,35) S
WRITE (10,35) S

35 FORMAT (3X,F15.5)
C
40 CONTINUE
50 STOP

END

-.
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C
C * MARK CIANCETTA *
C * 19 JUN 87 *
C * THIS PROGRAM COMPUTES THE THRESHOLD VALUE, SK, *
C * AND JK FOR THE MULTIVARIABLE CASE *

C
DIMENSION A(2,2),AT(2,2),B(2),BBT(2,2),Z(2,2)
DIMENSION Q(2,2) ,SKT(2,2) ,SK(50,4) ,ZI(2,2)
REAL M, JK(50)

C
DATA A/.1,0.,.8,.2/,B/.1,.2/,SK/200*0./,

* Q/1. ,0 ,0 ,1 ./,JK/50*0./ -'

R= .1
C
C ****INPUT m AND w****
C

WRITE (5,5)
5 FORMAT (1X,'m =

READ (5,10) M
10 FORMAT (F5.2)

WRITE (5,15)
15 FORMAT (1X,'w = ?')

READ (5,10) W
C
C * * * * CALCULATE AT(ranspose) * * * *
C

AT(1,1) = A(,1)
AT(1,2) = A(2,1)
AT(2,1) = A(1,2)
AT (2, 2) - A(2, 2)

C
C * * * * CALCULATE BBT(ranspose) * * * *
C

BBT(1,) = B(1)**2
BBT(1,2) = B(1)*B(2)
BBT(2,1) = B(1)*B(2)
BBT(2,2) = B(2)**2

C
C ****CALCULATE Z I + 1/m BBT ***
C

Z(1,1) = 1 + BBT(1,1)/M
Z(1,2) = BBT(1,2)/M
Z(2,1) = BBT(2,1)/M
Z(2,2) = 1 + BBT(2,2)/M

C
C ****DET. OF Z****
C

D= Z(1,1)*Z(2,2) - Z(1,2)*Z(2,1)
C
C * * * *CALCULATE INVERSE* * * *
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C
ZI(ll) - Z(2,2)/D
ZI(1,2) - -Z(l,2)/D
ZI(2,1) - -Z(2,1)/D
ZI(2,2) - Z(1,1)/D

C
C * * * * CALCULATE AT(ranrspose)ZI(nverse)A-> Z * * *
C
C

CALL MULT(ATZIZ)
CALL MULT(Z,A,Z)

C
C ****ADD wI****
C

Z(l,)= Z(l,l) + W
Z(2,2) -Z(2,2) + W

C
C * * * * CALCULATE MAG OF THE EIGENVALUES * * * *
C

C = Z(1,1) + Z(2,2)
D = 4*(Z(I,l)*Z(2,2) - Z(l,2)*Z(2,1))
D = C**2 - D

C
IF (D.GE.0.)THEN

El = ABS((C + SQRT(D))/2)
E2 = ABS((C - SQRT(D))/2)

ELSE
D - -D
El = SQRT(C**2 + D)/2
E2 = SQRT(C**2 - D)/2

ENDIF
C
C * * * * FIND LARGEST EIGENVALUE * * * *
C

IF (El.GT.E2)THEN
E = El

ELSE
E = E2

ENDIF
C
C * * * * OUTPUT THRESHOLD VALUE AND CONTINUE? * * * *
C

WRITE (5,30) E
30 FORMAT (lX,'THE MAXIMUM EIGENVALUE IS ',F6.3)

WRITE (5,32)
32 FORMAT (lX,'ENTER 1 TO CONTINUE')

READ (5,33) N
33 FORMAT (12)

IF (N.NE.l) GO TO 50
C
C * * * * OPEN FILE AND OUTPUT S(O) AND J(0) * * * *
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C 4

OPEN (UNIT=1O,FILE=' SK' ,STATUS=' NEW')
WRITE (5,35) SK(1,1),SK(1,2),SK(1,3),SK(1,4),JK(1)
WRITE (10,35) SK(1,l),SK(1,2),SK(1,3),SK(1,4),JK(l)

C
C ****STORE PREVIOUS SKIN SKT(emp) ***

C
DO 40 I=1,50

SKT(1,1) - SK(I,1)
SKT(1,2) = SK(I,2)
SKT(2,1) = SK(I,3)
SKT(2,2) = SK(I,4)

C
C ** CALCULATE tr [SKT) /2**
C

TR = (SKT(l,1) + SKT(2,2))/2
C
C ****CALCULATE B(transpose)SKB****
C

BTSKB = B(1)**2*SKT(1,1) + B(1)*B(2)*SKT(2,1)
* + B(1)*B(2)*SKT(1,2) + B(2)**2*SKT(2,2)

C
C ****THE INVERSE ASSOCIATED WITH S(k..)***
C

C = 1/(R + BTSKB + M*TR)
CALL MULT (SKT, BBT, Z)
CALL MULT(Z,SKT,Z)

C
* C * *SUBTRACT THIS FROM SK* *

C
SKT(1,1) = SKT(l,l) - C*Z(1,1)
SKT(1,2) = SKT(1,2) - C*Z(1,2)
SKT(2,1) = SKT(2,1) - C*Z(2,I)
SKT(2,2) = SKT(2,2) - C*Z(2,2)

C
C ****MULT FROM THE LEFT BY A(transpose)****
C

CALL MULT(AT,SKT,Z)
C
C ** MULT FROM THE RIGHT BY A*

* C
CALL MULT(Z,A,Z)

C
C * ADD QAND (w/2) *tr (SK)****
C

SK(I+1,1) = Z(1,1) + 1. + W*TR
SK(I+1,4) = Z(2,2) +i 1. + W*TR
SK(I+1,2) = Z(1,2)
SK(I+1,3) = Z(2,1)

C .

C * *CALCULATE JK **
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C '

* JK(I.l) =(SK(I+1,1)+SK(I+1,2)+

SK(I+1,3)+SK(I+1,4))/2
C
C ****OUTPUT THE RESULTS****
C

J =1+1
WRITE(5,35)SK(J,1) ,SK(J,2) ,SK(J,3) ,SK(J,4) ,JK(J)
WRITE(10,35)SK(J,1) ,SK(J,2) ,SK(J,3) ,SK(J,4) ,JK(J)

35 FORMAT (1X,5(2X,F15.5))
C
40 CONTINUE
50 STOP

END

-70-



APPENDIX A.3

h

-pl

'.5"



C P

C * MARK CIANCETTA *
C * 15 JUNE 1987 *
C * THIS PROGRAM MULTIPLIES TWO 2X2 MATRICES, *
C * A AND B, AND RETURNS THE PRODUCT IN C *
C
C

SUBROUTINE MULT(A,B,C)
C

DIMENSION A(2,2) ,B(2,2) ,C(2,2)
C

DO4 1 = 1,2
DO 3 J = 1,2

C(I,J) = A(I,1)*B(1,J) + A(I,2)*B(2,J)
3 CONTINUE
4 CONTINUE
C

RETURN
END

-d
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